История развития компьютерной техники схема. Тема: « История развития компьютерной техники. Основные этапы развития вычислительной техники

Рапанович Иван

Исследовательская работа

Скачать:

Предварительный просмотр:

Муниципальное общеобразовательное учреждение Ореховская средняя общеобразовательная школа

Школьная научно – практическая конференция школьников «Шаг в будущее »

Выполнил: Рапанович Иван

Ученик 6 класса

Руководитель: Демидова

Надежда Александровна

Орехово 2009 год

ВВЕДЕНИЕ

Счётно - решающие средства до появления ЭВМ

Поколение первое. Компьютеры на электронных лампах

Поколение второе. Транзисторные компьютеры

Поколение третье. Интегральные схемы

ПоКОЛЕНИЕ ЧЕТВЁРТОЕ. бОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

Введение.

Необходимость производить вычисления существовала всегда. Люди в стремлении усовершенствовать процесс вычисления изобретали всевозможные приспособления. Об этом свидетельствуют и греческий абак,и русские щоты,и японский серобян, и ещё множество разнообразных устройств. В 17веке были созданы первые механические счётные машины, в 19веке они получили широкое распространение.

Самое удивительное устройство, названное сначала электронно – вычислительной машиной (ЭВМ), а затем компьютером, подарил человеку 20век.

Идея классифицировать машины по поколениям вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появление новых возможностей, расширение областей применения и характера использования.

Цель данной работы заключается : в исследовании истории развития компьютерной техники

Задачи :

выяснить как совершенствовались компьютеры по мере развития;

выяснить, что понимается под «поколением ЭВМ»;

сделать вывод о проделанной работе;

сформировать позитивный интерес к информатике

Счётно - решающие средства до появления ЭВМ.

История вычислений уходит своими корнями в глубь веков так же, как и история человечества. Накопление запасов, делёж добычи, обмен – все эти действия связаны с вычислениями. Для подсчётов люди использовали пальцы, камешки, палочки узелки и т.д.

Одним из первых устройств (5 – 4 века до н.э.), облегчавших вычисления, можно считать специальное приспособление, названное впоследствии абаком. Первоначально это была доска, посыпанная тонким слоем мелкого песка или порошка из голубой глины. На ней заострённой палочкой можно было писать буквы и цифры. Впоследствии абак был усовершенствован и вычисления на нём уже проводились путём перемещения костей и камешков в продольных углублениях, а сами доски начали изготавливать из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. У японцев этот прибор назывался «серобян», у китайцев – «суан - пан».

В Древней Руси при счёте применялось устройство, похожее на абак, и называлось оно «русский щот». В 17 веке этот прибор уже имел вид русских счётов, которые можно встретить и в наши дни.

В начале 17 столетия молодым французским математиком и физиком Блезом Паскалем была изобретена первая в мире счётная машина, названная Паскалиной.

Которая выполняла сложение и вычитание.

В 1970 – 1980 годах немецкий математик Готфрид Лейбниц сконструировал счётную машину, которая выполняла все четыре арифметических действия.

В 1978 году русский учёный П. Чебышев сконструировал счётную машину, выполнявшую сложение и вычитание многозначных чисел.

В 1984 году петербургский инженер Однер сконструировал арифмометр, который выполнял все четыре арифметических действия.

В 30 – е столетия в нашей стране был разработан более совершенный арифмометр «Феликс».

Важным событием 20 столетия было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины – прообраза современного компьютера. В 1812 г. Он начал работать над так называемой «разностной» машиной. К 1822 г. Он построил небольшую действующую модель и

рассчитал на ней таблицу квадратов. В 1833 году приступил к разработке аналитической машины. Она должна была отличаться от разностной машины большей скоростью и более простой конструкцией. Машину предполагалось приводить в действие силой пара.

К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован.

Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором, в котором информация, нанесённая на перфокарты, расшифровывалась с помощью электрического тока. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.

Поколение первое.
Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Примерами машин I-го поколения могут служить MARK 1, ENIAC EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.
Транзисторные компьютеры.

1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.

Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .

Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а, магнитную ленту впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например «БЭСМ-6»).

Поколение третье.
Интегральные схемы.

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм 2 .

Первые и нтегральные с хемы (ИС ) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Поколение четвертое.
Большие интегральные схемы.

Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние – интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?

Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см 2 ). Началась эпоха микрокомпьютеров.

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel® . Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

Сравнение разных поколений компьютеров.

Во время развития компьютеров четко обозначилась тенденция к уменьшению размеров и увеличению производительности. Чем более совершенствовалась элементная база компьютеров, тем меньше и быстрее они становились. Это можно показать на примере следуюшего сравнения и таблицы:

  • ENIAC был размером с целый дом и весил 30 т.
  • На его создание потратили 0,5 млн. долларов.
  • Он потреблял 200 кВт энергии.
  • Лампа выходила из строя каждые 7-8 минут.
  • Он мог сложить два числа за 3 мск.

Очень большие
(ENIAC, UNIVAC, EDSAC)

Значительно меньшие

Миникомпьютеры

Микрокомпьютеры

Быстротдействие

1 (условно)

1 000

100 000

Носитель информации

Перфорированная лента

Магнитный диск, м. лента

Диск

Гибкий диск

ЗАКЛЮЧЕНИЕ

Какими должны быть компьютеры пятого поколения?

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Развитие идёт также по пути «интеллектуализации» компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний.

Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них – это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок, так называемый интеллектуальный интерфейс. Его задача – понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

В настоящее время очень многие области деятельности человека связаны с применением компьютеров. Почему же эти электронные машины так плотно внедряются в нашу жизнь. Все довольно тривиально. Они выполняют рутинную расчетную и оформительскую работу, освобождая наш мозг для более необходимых и ответственных задач. В результате утомляемость резко снижается, и мы начинаем работать гораздо производительнее, нежели без применения компьютера.

Возможности современных компьютеров поражают самое богатое воображение. Они способны параллельно выполнять несколько задач, сложность которых довольно велика. Поэтому некоторые производители задумываются над созданием искусственного интеллекта. Да и сейчас работа компьютера напоминает работу интеллектуального электронного помощника человека.

Муниципальное образовательное учреждение

<< Средняя общеобразовательная школа №2035 >>

Реферат по информатике

<< История развития компьютерной техники >>

Работу подготовил:

Ученик 7 класса

Беляков Никита

Проверил:

Учитель информатики

Дубова Е.В.

Москва, 2015

Введение

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Начало эпохи

Первая ЭВМ ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ - малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстродействием, оперативной памятью, способом ввода и вывода информации и т.д.

С.А. Лебедев – Родился в Нижнем Новгороде в семье учителя и литератора Алексея Ивановича Лебедева и учительницы из дворян Анастасии Петровны (в девичестве Мавриной). Был третьим ребёнком в семье. Старшая сестра - художница Татьяна Маврина. В 1920 году семья переехала в Москву.

В апреле 1928 года закончил Высшее техническое училище им. Баумана по специальности инженер-электрик

Первое поколение ЭВМ

Первое поколение ЭВМ - ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Второе поколение ЭВМ

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение ЭВМ

Третье поколение ЭВМ создавалось на новой элементной базе - интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем - сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами - БИС; затем появились сверхбольшие интегральные схемы - СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM -360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств - магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

Четвёртое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор - это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера - процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM . Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC ( Personal Computer ). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.

Другая линия в развитии ЭВМ четвертого поколения, это - суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Заключение

Разработки в области вычислительной техники продолжаются. ЭВМ пятого поколения - это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. В них будет возможным ввод с голоса, голосовое общение, машинное «зрение», машинное «осязание».

Машины пятого поколения - это реализованный искусственный интеллект.

Http://otvet.mail.ru/question/73952848

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.


Изучив эту тему, вы узнаете:

Как развивались счетно-решающие средства до создания ЭВМ;
- что такое элементная база и как ее изменение влияло на создание новых типов ЭВМ;
- как развивалась компьютерная техника от поколения к поколению.

Счетно-решающие средства до появления ЭВМ

История вычислений уходит своими корнями в глубь веков так же, как и история развития человечества. Накопление запасов, дележ добычи, обмен - все эти действия связаны с вычислениями. Для подсчетов люди использовали собственные пальцы, камешки, палочки, узелки и пр.

Потребность в поиске решений все более и более сложных задач и, как следствие, все более сложных и длительных вычислений поставила человека перед необходимостью искать способы, изобретать приспособления, которые смогли бы ему в этом помочь. Исторически сложилось так, что в разных странах появились свои денежные единицы, меры веса, длины, объема, расстояния и т. д. Для перевода из одной системы мёр в другую требовались вычисления, которые обычно могли производить лишь специально обученные люди, досконально знавшие всю последовательность действий. Их нередко приглашали даже из других стран. И совершенно естественно возникла потребность в изобретении устройств, помогающих счету. Так постепенно стали появляться механические помощники. До наших дней дошли свидетельства о многих таких изобретениях, навсегда вошедших в историю техники.

Одним из первых устройств (V-IV века до н. э.), облегчавших вычисления, можно считать специальное приспособление, названное впоследствии абаком (рисунок 24.1). Первоначально это была доска, посыпанная тонким слоем мелкого песка или порошка из голубой глины. На ней заостренной палочкой можно было писать буквы, цифры. Впоследствии абак был усовершенствован и вычисления на нем уже проводились путем перемещения костей и камешков в продольных углублениях, а сами доски начали изготавливать из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. В Греции абак существовал еще в V веке до н. э., у японцев этот прибор назывался «серобян», у китайцев - «суан-пан».

Рис. 24.1. Абак

В Древней Руси при счете применялось устройство, похожее на абак, и называлось оно «русский щот». В XVII веке этот прибор уже имел вид привычных русских счетов, которые можно встретить и в наши днй.

В начале XVII столетия, когда математика стала играть ключевую роль в науке, все острее ощущалась необходимость в изобретении счетной машины. К этому времени относится создание молодым французским математиком и физиком Блезом Паскалем первой счетной машины (рисунок 24.2, а), названной Пас- калиной, которая выполняла сложение и вычитание.

Рис. 24.2. Счетные машины XVII века: а) Паскалина, б) машина Лейбница

В 1670-1680 годах немецкий математик Готфрид Лейбниц сконструировал счетную машину (рисунок 24.2, б), которая выполняла все четыре арифметических действия.

В течение следующих двухсот лет было изобретено и построено еще несколько подобных счетных устройств, которые из-за ряда недостатков не получили широкого распространения.

Лишь в 1878 году русский ученый П. Чебышев сконструировал счетную машину, выполнявшую сложение и вычитание многозначных чисел. Наиболее широкое распространение в то время получил арифмометр, сконструированный петербургским инженером Однером в 1874 году. Конструкция прибора оказалась весьма удачной, так как позволяла довольно быстро выполнить все четыре арифметических действия.

В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр - «Феликс» (рисунок 24.3). Эти счетные устройства применялись несколько десятилетий и были основным техническим средством, облегчающим труд людей, связанных с обработкой больших объемов числовой информации.

Рис. 24.3. Арифмометр «Феликс»

Важным событием XIX века было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины - прообраза современных компьютеров. В 1812 году он начал работать над так называемой «разностной» машиной. Предшествующие вычислительные машины Паскаля и Леибница выполняли только арифметические действия. Беббидж же стремился сконструировать машину, которая выполняла бы определенную программу, проводила бы расчет числового значения заданной функции. В качестве основного элемента разностной машины Беббидж использовал зубчатое колесо для запоминания одного разряда десятичного числа. В результате он смог оперировать 18-разрядными числами. К 1822 году он построил небольшую действующую модель и рассчитал на ней таблицу квадратов. 

Совершенствуя разностную машину, Беббидж приступил в 1833 году к разработке аналитической машины (рисунок 24.4). Она должна была отличаться от разностной машины большей скоростью и более простой конструкцией. Согласно проекту, новую машину предполагалось приводить в действие силой пара.

Аналитическая машина была задумана как чисто механический аппарат с тремя основными блоками. Первый блок - устройство для хранения чисел на регистрах из зубчатых колес и система, которая передает эти числа от одного узла к другому (в современной терминологии - это память). Второй блок - устройство, позволяющее выполнять арифметические операции. Беббидж назвал его «мельницей». Третий блок предназначался для управления последовательностью действий машины. В конструкцию аналитической машины входило также устройство для ввода исходных данных и печати полученных результатов.

Предполагалось, что машина будет действовать по программе, которая задавала бы последовательность выполнения операций и передачи чисел из памяти в мельницу и обратно. Программы, в свою очередь, должны были кодироваться и переноситься на перфокарты. В то время подобные карты уже использовались для автоматического управления ткацкими станками. Тогда же математик леди Ада Лавлейс - дочь английского поэта лорда Байрона - разрабатывает первые программы для машины Беббиджа. Она заложила многие идеи и ввела ряд понятий и терминов, которые используются и по сей день.

Рис. 24.4. Аналитическая машина Беббиджа

К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован. Тем не менее его работы имели важное значение; многие последующие изобретатели воспользовались идеями, заложенными в основу придуманных им устройств. 

Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором (рисунок 24.5), в котором информация, нанесенная на перфокарты, расшифровывалась с помощью электрического тока. Это устройство позволило обработать данные переписи населения всего за 3 года вместо затрачиваемых ранее восьми лет. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.

Рис. 24.5. Табулятор

Огромное влияние на развитие вычислительной техники оказали теоретические разработки математиков: англичанина А. Тьюринга и работавшего независимо от него американца Э. Поста. «Машина Тьюринга (Поста)» - прообраз программируемого компьютера. Эти ученые показали принципиальную возможность решения автоматами любой проблемы при условии, что ее можно представить в виде алгоритма, ориентированного на выполняемые машиной операции.

С момента возникновения идеи Беббиджа о создании аналитической машины до ее реального внедрения в жизнь прошло более полутора столетий. Почему же столь большим оказался разрыв во времени между рождением идеи и ее техническим воплощением? Это обусловлено тем, что при создании любого устройства, в том числе и компьютера, очень важным фактором является выбор элементной базы, то есть тех деталей, из которых собирается вся система.

Первое поколение ЭВМ

Появление электронно-вакуумной лампы позволило ученым претворить в жизнь идею создания вычислительной машины. Она появилась в 1946 году в США и получила название ЭНИАК (ENIAC - Electronic Numerical Integrator and Calculator, «электронный численный интегратор и калькулятор» - рисунок 24.6). Это событие ознаменовало начало пути, по которому пошло развитие электронно-вычислительных машин (ЭВМ). 

Рис 24.6. Первая ЭВМ ЭНИАК

Дальнейшее совершенствование ЭВМ определялось развитием электроники, появлением новых элементов и принципов действий, то есть улучшением и расширением элементной базы. В настоящее время насчитывается уже несколько поколений ЭВМ. Под поколением ЭВМ понимают все типы и модели электронно-вычислительных машин, разработанные различными конструкторскими коллективами, но построенные на одних и тех же научных и технических принципах. Смена поколений обусловливалась появлением новых элементов, изготовленных с применением принципиально иных технологий.

Первое поколение (1946 - середина 50-х годов). Элементной базой служили электронно-вакуумные лампы, устанавливаемые на специальных шасси, а также резисторы и конденсаторы. Элементы соединяли проводами навесным монтажом. В ЭВМ ЭНИАК было 20 тыс. электронных ламп, из которых ежемесячно заменялось 2000. За одну секунду машина выполняла 300 операций умножения или же 5000 сложений многоразрядных чисел.

Выдающийся математик Джон фон Нейман и его коллеги изложили в своем отчете основные принципы логической структуры ЭВМ нового типа, которые позже были реализованы в проекте ЭДВАК (1950 г.). В отчете утверждалось, что ЭВМ должна создаваться на электронной основе и работать в двоичной системе счисления. В ее состав должны входить следующие устройства: арифметическое, центральное управляющее, запоминающее, для ввода данных и вывода результатов. Ученые также сформулировали два принципа работы: принцип программного управления с последовательным выполнением команд и принцип хранимой программы. Конструкция большинства ЭВМ последующих поколений, где были реализованы эти принципы, получила название «фон-неймановской архитектуры». 

Первая отечественная ЭВМ была создана в 1951 году под руководством академика С. А. Лебедева, и называлась она МЭСМ (малая электронная счетная машина). Затем в эксплуатацию ввели БЭСМ-2 (большую электронную счетную машину). Самой мощной ЭВМ 50-х годов в Европе была советская электронно- вычислительная машина М-20 с быстродействием 20 тыс. оп/с и объемом оперативной памяти 4000 машинных слов.

МЭСМ (малая электронная счетная машина)

С этого времени начался бурный расцвет отечественной вычислительной техники, и к концу 60-х годов в нашей стране успешно функционировала лучшая по производительности (1 млн оп/с) ЭВМ того времени - БЭСМ-6, в которой были реализованы многие принципы работы последующих поколений компьютеров.

БЭСМ-6 (большая электронная счетная машина)

С появлением новых моделей ЭВМ произошли изменения и в названии этой сферы деятельности. Ранее любую технику, используемую для вычислений, обобщенно называли «счетно-ре- шающими приборами и устройствами». Теперь же все, что имеет отношение к ЭВМ, именуют вычислительной техникой.

Перечислим характерные черты ЭВМ первого поколения.

♦ Элементная база: электронно-вакуумные лампы, резисторы, конденсаторы. Соединение элементов: навесной монтаж проводами.
♦ Габариты: ЭВМ выполнена в виде громадных шкафов и занимает специальный машинный зал.
♦ Быстродействие: 10-20 тыс. оп/с.
♦ Эксплуатация слишком сложна из-за частого выхода из строя электронно-вакуумных ламп. Существует опасность перегрева ЭВМ.
♦ Программирование: трудоемкий процесс в машинных кодах. При этом необходимо знать все команды машины, их двоичное представление, архитектуру ЭВМ. Этим в основном были заняты математики-программисты, которые непосредственно и работали за ее пультом управления. Обслуживание ЭВМ требовало от персонала высокого профессионализма. 

Второе поколение ЭВМ

Второе поколение приходится на период от конца 50-х до конца 60-х годов .

К этому времени был изобретен транзистор, который пришел на смену электронным лампам. Это позволило заменить элементную базу ЭВМ на полупроводниковые элементы (транзисторы, диоды), а также резисторы и конденсаторы более совершенной конструкции (рисунок 24.7). Один транзистор заменял 40 электронных ламп, работал с большей скоростью, был дешевле и надежнее. Средний срок его службы в 1000 раз превосходил продолжительность работы электронных ламп.

Изменилась и технология соединения элементов. Появились первые печатные платы (см. рис. 24.7) - пластины из изоляционного материала, например гетинакса, на которые по специальной технологии фотомонтажа наносился токо- проводящий материал. Для крепления элементной базы на печатной плате имелись специальные гнезда.

Рис. 24.7. Транзисторы, диоды, резисторы, конденсаторы и печатные платы

Такая формальная замена одного типа элементов на другой существенно повлияла на все характеристики ЭВМ: габариты, надежность, производительность, условия эксплуатации, стиль программирования и работы на машине. Изменился технологический процесс изготовления ЭВМ.

Рис. 24.8. ЭВМ второго поколения

Перечислим характерные черты ЭВМ второго поколения (рисунок 24.8).
- Элементная база : полупроводниковые элементы. Соединение элементов: печатные платы и навесной монтаж.
- Габариты : ЭВМ выполнены в виде однотипных стоек, чуть выше человеческого роста. Для их размещения требуется специально оборудованный машинный зал, в котором под полом прокладываются кабели, соединяющие между собой многочисленные автономные устройства.
- Производительность : от сотен тысяч до 1 млн оп/с.
- Эксплуатация : упростилась. Появились вычислительные центры с большим штатом обслуживающего персонала, где устанавливалось обычно несколько ЭВМ. Так возникло понятие централизованной обработки информации на компьютерах. При выходе из строя нескольких элементов производилась замена целиком всей платы, а не каждого элемента в отдельности, как в ЭВМ предыдущего поколения.
- Программирование : существенно изменилось, так как стало выполняться преимущественно на алгоритмических языках. Программисты уже не работали в зале, а отдавали свои программы на перфокартах или магнитных лентах специально обученным операторам. Решение задач производилось в пакетном (мультипрограммном) режиме, то есть все программы вводились в ЭВМ подряд друг за другом, и их обработка велась по мере освобождения соответствующих устройств. Результаты решения распечатывались на специальной перфорированной по краям бумаге.
- Произошли изменения как в структуре ЭВМ, так и в принципе ее организации . Жесткий принцип управления заменился микропрограммным. Для реализации принципа программируемости необходимо наличие в компьютере постоянной памяти, в ячейках которой всегда присутствуют коды, соответствующие различным комбинациям управляющих сигналов. Каждая такая комбинация позволяет выполнить элементарную операцию, то есть подключить определенные электрические схемы. 
- Введен принцип разделения времени , который обеспечил совмещение во времени работы разных устройств, например одновременно с процессором работает устройство ввода-вывода с магнитной ленты.

Третье поколение ЭВМ

Этот период продолжается с конца 60-х до конца 70-х годов. Подобно тому как изобретение транзисторов привело к созданию компьютеров второго поколения, появление интегральных схем ознаменовало новый этап в развитии вычислительной техники - рождение машин третьего поколения.

В 1958 году Джон Килби впервые создал опытную интегральную схему. Такие схемы могут содержать десятки, сотни и даже тысячи транзисторов и других элементов, которые физически неразделимы. Интегральная схема (рисунок 24.9) выполняет те же функции, что и аналогичная ей схема на элементной базе ЭВМ второго поколения, но при этом она имеет существенно меньшие размеры и более высокую степень надежности.

Рис. 24.9. Интегральные схемы Первой ЭВМ, выполненной на интегральных схемах, была IBM-360 фирмы IBM. Она положила начало большой серии моделей, название которых начиналось с IBM, а далее следовал номер, который увеличивался по мере совершенствования моделей этой серии. То есть чем больше был номер, тем большие возможности предоставлялись пользователю.

Аналогичные ЭВМ стали выпускать и в странах СЭВ (Совета экономической взаимопомощи): СССР, Болгарии, Венгрии, Чехословакии, ГДР, Польше. Это были совместные разработки, причем каждая страна специализировалась на определенных устройствах. Выпускались два семейства ЭВМ:
- большие - ЕС ЭВМ (единая система), например ЕС-1022, ЕС-1035, ЕС-1065; 
- малые - СМ ЭВМ (система малых), например СМ-2, СМ-3, СМ-4.

ЕС ЭВМ (единая система) ЕС-1035

СМ ЭВМ (система малых) СМ-3

В то время любой вычислительный центр оснащался одной-двумя моделями ЕС ЭВМ (рисунок 24.10). Представителей емейства СМ ЭВМ, составляющих класс мини-ЭВМ, можно было довольно часто встретить в лабораториях, на производстве, нa технологических линиях, на испытательных стендах. Особенюсть этого класса ЭВМ состояла в том, что все они могли работать в реальном масштабе времени, то есть ориентируясь на консретную задачу.

Рис. 24.10. ЭВМ третьего поколения

Приведем характерные черты ЭВМ третьего поколения.
- Элементная база : интегральные схемы, которые вставляются в специальные гнезда на печатной плате.
- Габариты : внешнее оформление ЕС ЭВМ схоже с ЭВМ второго поколения. Для их размещения также требуется машинный зал. А малые ЭВМ - это в основном две стойки приблизительно в полтора человеческих роста и дисплей. Они не нуждались, как ЕС ЭВМ, в специально оборудованном помещении.
- Производительность : от сотен тысяч до миллионов операций в секунду.
- Эксплуатация : несколько изменилась. Более оперативно производится ремонт обычных неисправностей, но из-за большой сложности системной организации требуется штат высококвалифицированных специалистов. Большую роль играет системный программист.
- Технология программирования и решения задач : такая же, как на предыдущем этапе, хотя несколько изменился характер взаимодействия с ЭВМ. Во многих вычислительных центрах появились дисплейные залы, где каждый программист в определенное время мог подсоединиться к ЭВМ в режиме разделения времени. Как и прежде, основным оставался режим пакетной обработки задач.
- Произошли изменения в структуре ЭВМ . Наряду с микропрограммным способом управления используются принципы модульности и магистральности. Принцип модульности проявляется в построении компьютера на основе набора модулей - конструктивно и функционально законченных электронных блоков в стандартном исполнении. Под магист- ральностью понимается способ связи между модулями компьютера, то есть все входные и выходные устройства соединены одними и теми же проводами (шинами). Это прообраз современной системной шины.
- Увеличились объемы памяти . Магнитный барабан постепенно вытесняется магнитными дисками, выполненными в виде автономных пакетов. Появились дисплеи, графопостроители.

Четвертое поколение ЭВМ

Этот период оказался самым длительным - от конца 70-х годов по настоящее время. Он характеризуется всевозможными новациями, приводящими к существенным изменениям. Однако кардинальных, революционных перемен, позволяющих говорить о смене этого поколения ЭВМ, пока не произошло. Хотя, если сравнивать ЭВМ, например, начала 80-х годов и сегодняшние, то очевидно существенное различие.

Следует особо отметить одну из самых значительных идей, воплощенных в компьютере на данном этапе: использование для вычислений одновременно нескольких процессоров (мультипроцессорная обработка). Также претерпела изменение и структура компьютера.

Новые технологии создания интегральных схем позволили разработать в конце 70-х - начале 80-х годов ЭВМ четвертого поколения на больших интегральйых схемах (БИС), степень интеграции которых составляет десятки и сотни тысяч элементов на одном кристалле. Наиболее крупным сдвигом в электронно-вычислительной технике, связанным с применением БИС, стало создание микропроцессоров. Сейчас этот период расценивается как революция в электронной промышленности. Первый микропроцессор был создан фирмой Intel в 1971 году. На одном кристалле удалось сформировать минимальный по составу аппаратуры процессор, содержащий 2250 транзисторов.

С появлением микропроцессора связано одно из важнейших событий в истории вычислительной техники - создание и применение персональных ЭВМ (рисунок 24.11), что даже повлияло на терминологию. Постепенно прочно укоренившийся термин «ЭВМ» был вытеснен ставшим уже привычным словом «компьютер», а вычислительная техника стала называться компьютерной.

Рис. 24.11. Персональный компьютер

Начало широкой продажи персональных ЭВМ связано с именами С. Джобса и В. Возняка, основателей фирмы «Эпл компьютер» (Apple Computer), которая с 1977 года наладила выпуск персональных компьютеров Apple. В компьютерах этого типа за основу был взят принцип создания «дружественной» обстановки работы человека на ЭВМ, когда при создании программного обеспечения одним из основных требований стало обеспечение удобной работы пользователя. ЭВМ повернулась лицом к человеку. Дальнейшее ее совершенствование шло с учетом удобства работы пользователя. Если раньше при эксплуатации ЭВМ был реализован принцип централизованной обработки информации, когда пользователи концентрировались вокруг одной ЭВМ, то с появлением персональных компьютеров произошло обратное движение - децентрализация, когда один пользователь может компьютерами. работать с несколькими

С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена. IBM выпустила документацию по аппаратуре и программные спецификации, что позволило другим фирмам разрабатывать как аппаратное, так и программное обеспечение. Таким образом, появились семейства (клоны) «двойников» персональных компьютеров IBM. 

В 1984 году фирмой IBM был разработан персональный компьютер на базе микропроцессора 80286 фирмы Intel с шиной архитектуры промышленного стандарта - ISA (Industry Standart Architecture). С этого времени началась жесткая конкуренция между несколькими корпорациями, производящими персональные компьютеры. Один тип процессора сменял другой, что зачастую требовало дополнительной существенной модернизации, а подчас и полной замены компьютеров. Гонка в поиске все более и более совершенных технических характеристик всех устройств компьютера продолжается и по сей день. Каждый год требуется проводить коренную модернизацию существующего компьютера.

Общее свойство семейства IBM PC - совместимость программного обеспечения снизу вверх и принцип открытой архитектуры, предусматривающий возможность дополнения имеющихся аппаратных средств без изъятия старых или их модификацию без замены всего компьютера.

Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей.

Компьютеры четвертого поколения развиваются в двух направлениях, о которых будет рассказано в последующих темах этого раздела. Первое направление - создание многопроцессорных вычислительных систем. Второе - изготовление дешевых персональных компьютеров как в настольном, так и в переносном исполнении, а на их основе - компьютерных сетей.

Контрольные вопросы и задания

1. Расскажите об истории развития счетно-решающих устройств до появления ЭВМ.

2. Что такое поколение ЭВМ и чем вызывается смена поколений?

3. Расскажите о первом поколении ЭВМ.

4. Расскажите о втором поколении ЭВМ.

5. Расскажите о третьем поколении ЭВМ.

6. Расскажите о четвертом поколении ЭВМ.

7. Когда и почему название «ЭВМ» стало постепенно заменяться термином «компьютер»?

8. Чем прославился математик Джон фон Нейман? 

Перспективы развития компьютерных систем

Изучив эту тему, вы узнаете:

Каковы основные тенденции развития компьютеров;
- каковы причины, обусловливающие эти тенденции.




Зная функциональные возможности компьютеров, можно поразмышлять над перспективами их развития. Это не слишком благодарное занятие, особенно в отношении компьютерной техники, так как ни в какой другой области не происходит таких существенных изменений в столь короткие отрезки времени. Тем не менее суть развития компьютерной техники состоит в следующем: сначала перед людьми открывается некая сравнительно новая область использования компьютеров, но для реализации этих идей нужны некоторые новые, технологически обеспеченные возможности компьютеров. Как только необходимые технологии разработаны и внедрены, сразу становятся очевидными иные перспективные области применения компьютеров и т. д.

Например, компания Fujitsu разработала универсального робота-носильщика. В фойе отеля робот приветствует гостей хриплым баритоном. Уточнив номер комнаты, робот берет тяжелые чемоданы в обе «руки» или выкатывает тележку и начинает движение в сторону лифта, затем нажимает кнопку вызова лифта, поднимается на этаж и провожает гостей в номер. Электронная карта отеля, восемь камер и ультразвуковые сенсоры позволяют роботу преодолевать любые препятствия. Правое и левое колеса вращаются независимо, поэтому движение по наклонным и неровным поверхностям дается легко. Используя систему обработки трехмерных изображений, робот может брать предметы и протягивать их гостям. Робот чутко воспринимает голосовые инструкции, подключен к Интернету. Справки об отеле можно получить на его цветном сенсорном экране. Ночью робот патрулирует коридоры отеля.

Так, например, в Массачусетсском технологическом институте (США) демонстрировались модели одежды со встроенными в них компьютерами и электронными устройствами. Сегодня новое поветрие названо «кибер- модой». Кибер-брошь, украшающая платье на этой иллюстрации, не просто аксессуар - это электронное устройство, вспыхивающее в такт сердцебиению его обладателя.

Можно предполагать, что в будущем появятся сотни активных компьютерных устройств, отслеживающих наше состояние и местоположение, легко воспринимающих нашу информацию и управляющих бытовыми приборами. Они не будут находиться в одной общей «оболочке». Они будут повсюду. Перспективы развития в отношении подобных компьютерных устройств: они станут намного более миниатюрными и будут иметь низкую стоимость.

Рассмотрим перспективы и тенденции развития компьютерной техники, обеспечивающей информационное обслуживание и управление. Каждый компьютер не только умеет безошибочно и быстро считать, но и представляет собой вместительное хранилище информации. В настоящее время все шире используется наиболее специфическая функция компьютеров - информационная, и именно это является одной из причин наступающей «всеобщей информатизации». Обычно информацию подготавливают на компьютере, затем печатают и уже в таком виде распространяют.

Однако уже в начале XXI века ожидается смена основной информационной среды - большую часть информации люди станут получать не по традиционным каналам связи - радио, телевидение, печать, а через компьютерные сети.

Изменение цели использования компьютеров наблюдается уже сегодня. Прежде компьютеры служили исключительно для выполнения различных научно-технических и экономических расчетов, и работали на них пользователи с общей компьютерной подготовкой и программисты.

Благодаря появлению телекоммуникаций кардинально изменяется область применения компьютеров пользователями. Потребность в компьютерных теле- коммуникациях постоянно расширяется. Все больше людей обращается к Интернету, чтобы узнать расписание движения поездов или последние новости из Думы, познакомиться с научной статьей коллеги, сделать выбор, где провести свободный вечер, и т. п. Информация подобного рода нужна каждому в любой момент и в любом месте.

В настоящее время разрабатывается новая концепция развития сети Интернет - это создание семантической паутины (англ. Semantic web). Она является надстройкой над существующей Всемирной паутиной и призвана сделать размещенную в сети информацию более понятной для компьютеров. С 1999 года проект семантической паутины развивается под эгидой Консорциума Всемирной паутины.

В настоящее время компьютеры принимают довольно ограниченное участие в формировании и обработке информации в Интернете. Функции компьютеров в основном сводятся к хранению, отображению и поиску информации. Это обусловлено тем, что большая часть информации в Интернете находится в текстовой форме, а компьютеры не могут воспринять и осмыслить смысловую информацию. Создание информации, ее оценку, классификацию и актуализацию - все это по-прежнему выполняет человек.

Встает вопрос - как же заставить компьютеры понимать смысл размещенной в сети информации и научить компьютеры пользоваться ею? Если компьютер пока нельзя научить понимать человеческий язык, то нужно создать язык, который был бы понятен компьютеру. В идеальном варианте вся информация в Интернете должна размещаться на двух языках: на языке, понятном человеку, и на языке, понятном компьютеру. Для создания понятного компьютеру описания сетевого ресурса в семантической паутине создан формат RDF (англ. Resource Description Framework). Он предназначен для хранения метаданных (метаданные - это данные о данных) и не предназначен для прочтения и использования человеком. Описания в формате RDF должны прикрепляться к каждому сетевому ресурсу и обрабатываться компьютером автоматически.

Семантическая паутина открывает доступ к четко структурированной информации для любых приложений, независимо от платформы и языков программирования. Программы смогут сами находить нужные ресурсы, обрабатывать информацию, обобщать данные, выявлять логические связи, делать выводы и даже принимать решения на основе этих выводов. При широком распространении и грамотном внедрении семантическая паутина может вызвать революцию в Интернете.

Семантическая паутина - это концепция сети, в которой каждый информационный ресурс на человеческом языке должен быть снабжен описанием, понятным компьютеру.

Компьютер должен быть полностью мобильным и снабжен радиомодемом для входа в компьютерную сеть. В перспективе портативные компьютеры должны стать более миниатюрными при быстродействии, сравнимом с производительностью современных суперЭВМ. Они должны иметь плоский дисплей с хорошей разрешающей способностью. Их внешние запоминающие устройства - магнитные диски - при небольших размерах будут иметь емкость более 100 Гбайт. Чтобы с компьютером можно было общаться на естественном языке, он будет широко оснащен средствами мультимедиа, в первую очередь, аудио- и видеосредствами.

Для обеспечения качественного и повсеместного обмена информацией между компьютерами будут использоваться принципиально новые способы связи:

♦ инфракрасные каналы в пределах прямой видимости;
♦ телевизионные каналы;
♦ беспроводная технология высокоскоростной цифровой связи.

Это позволит строить системы сверхскоростных информационных магистралей, связывающих воедино все существующие системы. 

Сферы применения ЭВМ все расширяются, и каждая из них обусловливает новую тенденцию развития компьютерной техники. В перспективе все вычислительные комплексы и системы от суперЭВМ до персонального компьютера станут составляющими единой компьютерной сети. А при такой сложной распределенной структуре должна быть обеспечена практически неограниченная пропускная способность и скорость передачи информации.

Современные полупроводниковые компьютеры скоро исчерпают свой потенциал, и даже при условии перехода к трехмерной архитектуре микросхем их быстродействие будет ограничено значением 1015 операций в секунду. Поиски новых путей совершенствования компьютеров ведутся во многих направлениях. Существует несколько возможных альтернатив замены современных компьютеров - квантовые компьютеры, нейрокомпьютеры и оптические компьютеры. При разработке «компьютеров будущего» используется широкий спектр научных дисциплин: молекулярная электроника, молекулярная биология, робототехника, квантовая механика, органическая химия и др. Рассмотрим основные особенности этих компьютеров.

Оптический компьютер. В оптических компьютерах носителем информации является световой поток. Применение оптического излучения в качестве носителя информации имеет ряд преимуществ по сравнению с электрическими сигналами:

♦ скорость распространения светового сигнала выше скорости электрического;
♦ световые потоки, в отличие от электрических, могут пересекаться друг с другом;
♦ световые потоки могут передаваться по свободному пространству;
♦ возможность создания параллельных архитектур.

Создание большего количества параллельных архитектур, по сравнению с традиционными электронными компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации.  Оптические технологии важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Интернет.

Нейрокомпьютер . Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. И прекрасным аналогом для решения такой проблемы может стать мозг и нервная система живых организмов, которые позволяют эффективно обрабатывать сенсорную информацию. Мозг человека состоит из 10 миллиардов нервных клеток - нейронов. Аналогично должен быть построен и нейрокомпьютер, который моделирует функции нейронов.

Появление нейрокомпьютеров, часто называемых биокомпьютерами, во многом связывают с развитием нанотехнологий, которыми активно занимаются ученые многих стран. Нейрокомпьютеры предполагается строить на базе нейрочипов (искусственных нейронах) и нейроноподобных связях, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Поэтому для решения задач разного типа требуется нейронная сеть разной топологии (разновидностей соединения нейрочипов). Один искусственный нейрон может использоваться в работе нескольких алгоритмов обработки информации в сети, и каждый алгоритм реализуется при помощи некоторого количества искусственных нейронов. Нейронная сеть (перцептрон) может обучаться распознаванию образов.

Перспективность создания нейрокомпьютеров состоит в том, что искусственные структуры, имеющие свойства мозга и нервной системы, имеют ряд важных особенностей: параллельность обработки информации, способность к обучению, способность к автоматической классификации, высокая надежность, ассоциативность.

Квантовый компьютер . В основе работы квантового компьютера лежат законы квантовой механики. Квантовая механика позволяет установить способ описания и законы движения микрочастиц (атомов, молекул, атомных ядер) и их систем. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Физический принцип действия квантового компьютера основан на изменении энергии атома. Она имеет дискретный ряд значений EQ, EI,... Еп, называемый энергетическим спектром атома. Излучение и поглощение атомом электромагнитной энергии происходит отдельными порциями - квантами, или фотонами. При поглощении фотона энергия атома увеличивается и осуществляется переход с нижнего на верхний уровень, при излучении фотона совершается обратный переход вниз.

Поэтому в качестве основной единицы квантового компьютера введено понятие «кубит» (qubit, Quantum Bit) по аналогии с традиционным компьютером, где используется понятие «бит». Известно, что бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше. Поэтому для описания состояния квантовой системы было введено понятие волновой функции в виде вектора с большим числом значений.

Для квантовых компьютеров так же, как и для классических, введены элементарные квантовые логические операции: дизъюнкция, конъюнкция и отрицание, с помощью которых будет организована вся логика квантового компьютера. При создании квантового компьютера основное внимание уделяется вопросам управления кубитами при помощи вынужденного излучения и недопущении спонтанного излучения, которое нарушит работу всей квантовой системы.

Можно предположить, что объединение квантовых, оптических и нейронных компьютеров даст миру мощную гибридную вычислительную систему. Такую систему от обычной будут отличать огромная производительность (ориентировочно 1051), за счет параллелизма выполнения операций, а также возможности эффективной обработки и управления сенсорной информацией. Для производства «компьютеров будущего» будут необходимы значительные экономические затраты, в несколько десятки раз превышающие затраты на производство современных полупроводниковых компьютеров. 

В таблице 28.1 представлены общие тенденции изменения характеристик компьютерной техники с учетом основных областей использования как современных компьютеров, так и перспективных.

Таблица 28.1. Тенденции изменения характеристик компьютеров


Контрольные вопросы и задания

1. Какова зависимость между целью использования ЭВМ и развитием компьютерной техники?

2. Приведите примеры перспективного использования компьютеров.

3. На что ориентированы перспективные компьютерные системы?

4. Как вы представляете будущее компьютерной техники?

5. На какие значения технических параметров компьютеров можно ориентироваться в недалеком будущем?

6. Каково назначение семантической паутины?

7. Почему ведутся разработки компьютеров на различных принципах действий?

8. В чем состоит основная идея создания оптического компьютера?

9. В чем состоит основная идея создания нейрокомпьютера?

10. В чем состоит основная идея создания квантового компьютера?

Компьютеры пятого поколения. Разработка следующих поколений компьютеров производится на основе больших интегральных повышений интеграции,использования оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером будут способны воспринимать информацию с рукописного или печатного теста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. В компьютерах пятого поколения произойдет качественный переход от обработки данных к обработке знаний. Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок, так называемый интеллектуальный интерфейс. Его задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в рабочую программу для компьютера. Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящих на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещенных на одном кристалле полупроводника.